LEI	TFADEN ENERGIET	ECHNISCHES VERHA	ALTEN VON GEBÄUDE	N
Ausgabe: Dezember 2011	Beschluss: 30.12.2011	Ersetzt Ausgabe: Oktober 2011	OIB-Zahl OIB-330.6-002/12	Seite 1 von 28 Seiten

Leitfaden Energietechnisches Verhalten von Gebäuden

Ausgabe: Oktober 2011 -

Revision Dezember 2011

LEITFADEN ENERGIETECHNISCHES VERHALTEN VON GEBÄUDEN

Ausgabe: Dezember 2011

Beschluss: 30.12.2011

Ersetzt Ausgabe:
Oktober 2011

OIB-Zahl OIB-330.6-002/12 Seite 2 von 28 Seiten

INHALTSÜBERSICHT

0	Vorbemerkungen	4
1	Anwendungsbereich des Leitfadens	4
2	Allgemeine Bestimmungen	4
2.1	Berechnungsmethode	4
2.2	Referenzklima	4
2.3	Standortklima	5
2.4	Nutzungsprofile	5
2.5	Referenzausstattung	5
2.6	Brutto-Grundfläche und Netto-Grundfläche	5
2.7	Bilanzierung	5
2.8	Zonierung	5
2.9	Multiple Systeme	8
3	Endenergiebedarf	
3.1	Jährlicher Endenergiebedarf	10
3.2	Spezifischer Endenergiebedarf	
4	Primärenergiebedarf, Kohlendioxidemissionen und Gesamtenergieef	
4.1	Umrechnung der Anteile des Endenergiebedarfs	
4.2	Primärenergiebedarf	14
4.3	Kohlendioxidemissionen	16
4.4	Gesamtenergieeffizienz-Faktor	18
5	Vereinfachtes Verfahren	25
5.1	Anwendungsbereich	25
5.2	Gebäudegeometrie	25
5.3	Bauphysik	26
5.4	Haustechnik	
6	Empfehlung von Maßnahmen für bestehende Gebäude	
6.1	Allgemeines	
6.2	Gebäudehülle	
6.3	Haustechnik	33
7	Hinweise zur Befüllung der ersten beiden Seiten des Energieausweis	
7.1	Allgemeines	
7.2	Block "GEBÄUDE" (generell)	
7.3	Block "ENERGIEEFFIZIENZSKALA" (LABELING)	
7.4	Block "GEBÄUDEKENNDATEN" (generell)	
7.5	Block "WÄRME- UND ENERGIEBEDARF" (WG)	
7.6	Block "WÄRME- UND ENERGIEBEDARF" (NWG)	
7.7	U-Werte-Block (SG)Fehler! Textmarke nicht de	
7.8	Unterschriftenblock (generell)	
7.9	Verwendete Farbcodes	43

LEI	TFADEN ENERGIET	ECHNISCHES VERHA	ALTEN VON GEBÄUDE	N
Ausgabe: Dezember 2011	Beschluss: 30.12.2011	Ersetzt Ausgabe: Oktober 2011	OIB-Zahl OIB-330.6-002/12	Seite 3 von 28 Seiten

0 Vorbemerkungen

Die zitierten Normen und sonstigen technischen Regelwerke gelten in der im Dokument "OIB-Richtlinien – Zitierte Normen und sonstige technische Regelwerke", Ausgabe Oktober 2011 angeführten Fassung.

1 Anwendungsbereich des Leitfadens

Der Leitfaden "Energietechnisches Verhalten von Gebäuden" ist ein technischer Anhang zur OIB-Richtlinie 6 "Energieeinsparung und Wärmeschutz". Er enthält allgemeine Bestimmungen, die Berechnungsmethode für Endenergiebedarf, Primärenergiebedarf, Kohlendioxidemissionen und Gesamtenergieeffizienz-Faktor, das vereinfachte Verfahren sowie Empfehlungen von Maßnahmen für bestehende Gebäude. Weiters ist eine Anleitung zur Befüllung des Energieausweises enthalten.

2 Allgemeine Bestimmungen

2.1 Berechnungsmethode

Für die Berechnungsmethode sind folgende ÖNORMen heranzuziehen:

	Titel der ÖNORM	Nummer der ÖNORM
Nutzenergiebedarf	Heizwärme- und Kühlbedarf (HWB, KB)	ÖNORM B 8110-6
Raumlufttechnik-Energiebedarf (RLTEB)		ÖNORM H 5057
Endenergiebedarf	Heiztechnik-Energiebedarf (HTEB) und Befeuchtungs- Energiebedarf (BefEB)	ÖNORM H 5056
Kühl-Energiebedarf (KEB)		ÖNORM H 5058
Beleuchtungs-Energiebedarf (BelEB)		ÖNORM H 5059

2.2 Referenzklima

Die Werte für das Referenzklima sind der ÖNORM B 8110-5 zu entnehmen. Ergänzende Werte können durch arithmetische Mittelung der Teilergebnisse für die sieben Klimaregionen mit folgenden Seehöhen ermittelt werden:

Klimaregion	Seehöhe [m]
Region West (W)	346,76
Region Nord – Föhngebiet (NF)	220,28
Region Nord – außerhalb von Föhngebieten (N)	113,89
Region alpine Zentrallage (ZA)	126,34
Region Beckenlandschaften im Süden (SB)	120,46
Region Südost-südlicher Teil (S/SO)	190,49
Region Südost-nördlicher Teil (N/SO)	247,13

2.3 Standortklima

Die Werte für das Standortklima sind der ÖNORM B 8110-5 zu entnehmen.

2.4 Nutzungsprofile

Die Werte für die Nutzungsprofile sind der ÖNORM B 8110-5 zu entnehmen.

2.5 Referenzausstattung

Die Referenzausstattung ist Punkt 15 der OIB-Richtlinie 6 zu entnehmen.

LEI	TFADEN ENERGIET	ECHNISCHES VERHA	ALTEN VON GEBÄUDE	N
Ausgabe: Dezember 2011	Beschluss: 30.12.2011	Ersetzt Ausgabe: Oktober 2011	OIB-Zahl OIB-330.6-002/12	Seite 4 von 28 Seiten

2.6 Brutto-Grundfläche und Netto-Grundfläche

Die Brutto-Grundfläche und die Netto-Grundflächen ist gemäß ÖNORM B 1800 zu bestimmen, wobei Detailfestlegungen der ÖNORM B 8110-6 zu entnehmen sind.

2.7 Bilanzierung

Die Bilanzierung umfasst folgende Energieaufwendungen:

- Heizung (einschließlich Befeuchtung und Hilfsenergie für Heizung, ausgenommen Hilfsenergie für das Medium Luft),
- Warmwasserversorgung (einschließlich Hilfsenergie),
- Kühlung (einschließlich Hilfsenergie),
- Lüftung (einschließlich Hilfsenergie für das Medium Luft) und
- Beleuchtung
- Haushaltsstrombedarf (bei Wohngebäuden) oder der
- Betriebsstrombedarf (bei Nicht-Wohngebäuden)

2.8 Zonierung

Für die Berechnung des Energiebedarfs kann es erforderlich sein, das Gebäude in unterschiedliche Berechnungszonen zu unterteilen. Die jeweiligen Berechnungszonen ergeben sich aus den jeweiligen Nutzungen für Wohngebäude sowie für Nicht-Wohngebäude entsprechend den Nutzungsprofilen gemäß ÖNORM B 8110-5 (Nutzungszonen). Der Gesamtenergiebedarf des Gebäudes ergibt sich aus der Summe des Energiebedarfs aller Nutzungszonen.

Innerhalb eines Gebäudes dürfen Zonen

- unterschiedlicher Nutzung (bei gleicher Innenraumtemperatur, ausgenommen Gebäudeteile von Nicht-Wohngebäuden der Kategorie 13 "sonstige konditionierte Gebäude"),
- unterschiedlicher Bauweise.
- unterschiedlicher Versorgungseinrichtungen und
- unterschiedlicher baurechtlicher Vorgaben

zu einem Energieausweis zusammengefasst werden. Gewinne und Verluste aufgrund gegebener haustechnischer Versorgungssysteme sind entsprechend den Gebäudezonen zu bilanzieren.

Zu beachten gilt: Unterliegen verschiedene Gebäudezonen unterschiedlichen baurechtlichen Anforderungen, so sind **diese** Anforderung bzw. ihre Erfüllung nachvollziehbar auszuweisen.

2.8.1 Konditionierte Zone/Nicht konditionierte Zone

Eine Zone umfasst die Räume bzw. Grundflächenanteile innerhalb des konditionierten Brutto-Volumens eines Gebäudes, die durch einheitliche Nutzungsanforderungen (Temperatur, Belüftung und Beleuchtung) bei gleichartigen Randbedingungen gekennzeichnet sind. Sobald eine Zone Anforderungen an eine Art der Konditionierung (Heizung, Kühlung, Befeuchtung, Belüftung) stellt, ist sie als "konditionierter Raum" zu bezeichnen und zu berechnen. Nicht konditionierte Räume oder Bereiche werden in der Berechnung nur durch ihren Einfluss auf benachbarte Zonen (Wärmefluss durch Transmission) berücksichtigt und müssen als solche deutlich gekennzeichnet werden.

2.8.2 Versorgungsbereich

Versorgungsbereiche umfassen jene Gebäudeteile bzw. jene Gebäudezonen, die von der gleichen "Anlagentechnik" (Heizung, Warmwasser, Lüftung, Kühlung oder Beleuchtung) versorgt werden. Ein Versorgungsbereich kann sich über mehrere Zonen erstrecken, eine Zone kann auch mehrere (unterschiedliche) Versorgungsbereiche einschließen.

LEI	TFADEN ENERGIET	ECHNISCHES VERHA	ALTEN VON GEBÄUDE	N
Ausgabe: Dezember 2011	Beschluss: 30.12.2011	Ersetzt Ausgabe: Oktober 2011	OIB-Zahl OIB-330.6-002/12	Seite 5 von 28 Seiten

2.8.3 Zonierungskriterien

Die Zonierung eines Gebäudes erfolgt in zwei Schritten. Erstens muss eine Zuordnung für die Berechnung des **Nutzenergiebedarfs** vorgenommen werden. Dabei werden Bereiche bzw. Räume gleicher Nutzung entsprechend den Nutzungsprofilen gemäß ÖNORM B 8110-5 unter Berücksichtigung der baulichen Gegebenheiten (z.B. Orientierungen und Fensterflächenanteile) zu Nutzungszonen zusammengefasst.

Zweitens kann es ggf. erforderlich sein, dass das Gebäude für die Berechnung des **Endenergiebedarfs** im Vergleich zur Berechnung des Nutzenergiebedarfs unterschiedlich zoniert werden muss. Das Hauptkriterium stellt dabei ein einheitliches Versorgungssystem (Heizung, Kühlung, Beleuchtung, Trinkwasser und Lüftung) dar.

Wohngebäude werden durch ein einziges Nutzungsprofil abgebildet, d.h. die Berechnung erfolgt anhand einer Nutzungszone.

Für Nicht-Wohngebäude kann es mehrere Nutzungsprofile bzw. Nutzungszonen geben.

2.8.3.1 Zonierungskriterien für die Berechnung des Nutzenergiebedarfs

a) Allgemeines

Die Zuordnung erfolgt anhand der überwiegenden Nutzung und Bauweise (siehe Punkt 3.1 der OIB-Richtlinie 6). Wenn die Grenzen überschritten werden, ist eine Zuordnung der einzelnen Zonen zu den unterschiedlichen Nutzungsbedingungen und Bauweisen gemäß der Kriterien b) bis d) durchzuführen.

Jedes Gebäude stellt eine eigene Berechnungszone dar, für die ein Energieausweis auszustellen ist. Dies gilt jedenfalls auch für jede Nutzungseinheit in Reihenhäusern. (Anmerkung: Reihenhäuser müssen gemäß Begriffsbestimmung nicht immer eigene Gebäude sein.)

b) Bauweise

Wenn einzelne Abschnitte eines Gebäudes einer unterschiedlichen Bauweise (leicht, mittel, schwer) entsprechen, sind die jeweiligen Abschnitte als eigene Zone zu berechnen.

c) Nutzungsbedingungen (Nutzungsprofile)

Wenn sich Nutzungsbedingungen in den nachfolgenden Kriterien unterscheiden, sind die jeweiligen Abschnitte als eigene Zone zu berechnen.

- Abwärmen durch Personen, Geräte, Beleuchtung
- Luftwechselzahlen
- Beleuchtungsannahmen
- Nutzungszeiten

d) Kriterium 4 K

Das Kriterium "4 Kelvin" (siehe ÖNORM EN 13790) gilt als Grenzwert für die Berechnung der Wärmeströme zwischen zwei benachbarten Zonen. Sobald sich die Raumbilanzinnentemperatur zweier benachbarter Zonen um mehr als 4 K voneinander unterscheidet, müssen die Zonen getrennt bilanziert werden. Abschließend erfolgt die Summierung der Bilanzen.

2.8.3.2 Zonierungskriterien für die Berechnung des Endenergiebedarfs

Die Zonierung im Bereich der Berechnung des Endenergiebedarfs erfolgt für das Versorgungssystem nach folgenden Kriterien:

- 1. RLT Anlage
 - 1.1 Sofern mehr als 80 % des Gebäudes (Brutto-Grundfläche) über die gleiche RLT-Anlage versorgt wird, ist keine weitere Zonierung der konditionierten Räume erforderlich.
 - 1.2 Die Zonen werden nach den Anforderungen hinsichtlich der Funktionen Heizen, Kühlen, Befeuchten und Entfeuchten zusammengefasst.
- 2. Heizungs- und Warmwassersystem: Zonen die von unterschiedlichen Systemen versorgt werden, müssen getrennt berechnet werden (Multiple Systeme). Wenn mehr als 80 % des Gebäudes (Brutto-

LEI	TFADEN ENERGIET	ECHNISCHES VERHA	ALTEN VON GEBÄUDE	N
Ausgabe: Dezember 2011	Beschluss: 30.12.2011	Ersetzt Ausgabe: Oktober 2011	OIB-Zahl OIB-330.6-002/12	Seite 6 von 28 Seiten

Grundfläche) über die gleiche Heizungsanlage versorgt wird, ist keine weitere Zonierung der konditionierten Räume erforderlich. Falls das Heizungs- bzw. Warmwasser nicht gemeinsam bereitgestellt wird (Unterschiede in Wärmeverteilung, -speicherung und -bereitstellung), sind das Heizungs- sowie das Warmwassersystem getrennt zu betrachten. Für jedes System einzeln gilt das Zonierungskriterium.

- 3. Kühlungssystem: Zonen die von unterschiedlichen Systemen versorgt werden, müssen getrennt berechnet werden. Wenn mehr als 80 % des Gebäudes (Brutto-Grundfläche) über die gleiche Kühlanlage versorgt wird, ist keine weitere Zonierung der konditionierten Räume erforderlich.
- 4. Beleuchtungssystem: Zonen die durch unterschiedliche Beleuchtungssysteme ausgestattet sind müssen getrennt berechnet werden. Wenn mehr als 80 % des Gebäudes (Brutto-Grundfläche) über die gleichen Beleuchtungseinrichtung versorgt wird, ist keine weitere Aufteilung der konditionierten Räume erforderlich.

2.9 Multiple Systeme

2.9.1 Systemübersicht der multiplen Systeme

Ein multiples System hat je nach Anlagenkomponente Bereitstellungs-, Speicher-, Verteilungs- und Abgabeverluste. Grundsätzlich kann man ein Heiz- und Kühlsystem (ausgenommen der Bereitstellung und Speicherung) in 3 Kategorien einteilen:

- Luftsysteme
- Systeme auf Wasserbasis
- Split Geräte

Die ausgeführten Varianten können sehr unterschiedlich sein.

2.9.2 Aufteilung der Abgabe-, Verteilungs-, Speicher- und Bereitstellungsverluste

Bei multiplen Systemen müssen die Verluste auf die zu berechnenden Zonen wie folgt aufgeteilt werden.

2.9.2.1 Abgabeverluste

Abgabeverluste werden einmalig für den gesamten Versorgungsbereich ermittelt und anschließend gewichtet nach dem Heizwärme- bzw. Kühlbedarf auf die Zonen aufgeteilt.

2.9.2.2 Verteilungsverluste

Verteilungsverluste werden einmalig für den gesamten Versorgungsbereich bestimmt und anschließend gewichtet nach der konditionierten Brutto-Grundfläche auf die Zonen umgelegt.

2.9.2.3 Speicherverluste

Die Speicherverluste werden einmalig für den gesamten Versorgungsbereich ermittelt und anschließend gewichtet nach dem Heizwärme- bzw. Kühlbedarf auf die Zonen aufgeteilt. Die Wärmeabgabe der Speicherung wird vollständig in der Zone wirksam, in welcher der Speicher aufgestellt ist.

2.9.2.4 Bereitstellungsverluste

Die Bereitstellungsverluste werden einmalig für den gesamten Versorgungsbereich ermittelt und anschließend gewichtet nach dem Heizwärme- bzw. Kühlbedarf auf die Zonen aufgeteilt.

2.9.2.5 Hilfsenergie

Die Hilfsenergie wird für das jeweilige Anlagensystem in den Bereichen Abgabe, Verteilung, Speicherung bzw. Bereitstellung für die jeweilige Zone ermittelt.

LEI	TFADEN ENERGIET	ECHNISCHES VERHA	ALTEN VON GEBÄUDE	N
Ausgabe: Dezember 2011	Beschluss: 30.12.2011	Ersetzt Ausgabe: Oktober 2011	OIB-Zahl OIB-330.6-002/12	Seite 7 von 28 Seiten

Endenergiebedarf 3

3.1 Jährlicher Endenergiebedarf

Der jährliche Endenergiebedarf ist jene Energiemenge, die zur Deckung des Heizwärmebedarfs (einschließlich Befeuchtungsenergiebedarf), des Kühlbedarfs, des Warmwasserwärmebedarfs sowie aller Hilfsenergiebedarfe (sowohl für Heizungs- und Kühlmedien als auch für Luftförderung), des Beleuchtungsenergiebedarfs und des Haushaltsstrombedarfs bzw. Betriebsstrombedarfs benötigt wird. Jeglicher Prozessenergiebedarf bleibt unberücksichtigt (sowohl hinsichtlich des Aufwandes als auch hinsichtlich des Nutzens).

Der jährliche Endenergiebedarf Q_{EEB} für **Wohngebäude** wird wie folgt ermittelt:

$$Q_{FER} = [Q_{HER}] + Q_{HHSR}$$
 in kWh/a (1)

Jährlicher Heizenergiebedarf gemäß ÖNORM H 5056, in kWh/a, Q_{HEB}

Jährlicher Energiebedarf für Haushaltsstrom gemäß OIB-Richtlinie 6 (nur bei Wohngebäu-**Q**_{HHSB}

den), in kWh/a

Der jährliche Endenergiebedarf Q_{EEB} für Nicht-Wohngebäude der Gebäudekategorien 1 bis 12 wird wie folat ermittelt:

$$Q_{FFR} = \left| Q_{HFR} + Q_{RoFFR} \right| + \left| Q_{KFR} \right| + Q_{RoFFR} + Q_{RSR} \qquad \text{in kWh/a} \tag{2}$$

Jährlicher Heizenergiebedarf gemäß ÖNORM H 5056, in kWh/a, Q_{HEB}

Jährlicher Befeuchtungsenergiebedarf gemäß ÖNORM H 5056 (nur bei Nicht-**Q**_{BefEB} Wohngebäuden), in kWh/a,

Jährlicher Kühlenergiebedarf gemäß ÖNORM H 5058 (nur bei Nicht-Wohngebäuden), in **Q**_{KEB}

kWh/a

Jährlicher Energiebedarf für Beleuchtung gemäß ÖNORM H 5059 (nur bei Nicht-Q_{BelEB}

Wohngebäuden), in kWh/a

Jährlicher Energiebedarf für Betriebsstrom gemäß OIB-Richtlinie 6 (nur bei Nicht-**Q**_{BSB}

Wohngebäuden), in kWh/a

Spezifischer Endenergiebedarf

Der spezifische Endenergiebedarf EEB_{BGF} bezogen auf die konditionierte Brutto-Grundfläche wird wie folgt ermittelt:

$$EEB_{BGF} = \frac{Q_{EEB}}{BGF}$$
 in kWh/(m²a) (3)

BGF Konditionierte Brutto-Grundfläche, in m²

Jährlicher Endenergiebedarf gemäß Formel (1) für Wohngebäude bzw. Formel (2) für Nicht- Q_{EEB}

Wohngebäude, in kWh/a

LEI	TFADEN ENERGIET	ECHNISCHES VERHA	ALTEN VON GEBÄUDE	N
Ausgabe: Dezember 2011	Beschluss: 30.12.2011	Ersetzt Ausgabe: Oktober 2011	OIB-Zahl OIB-330.6-002/12	Seite 8 von 28 Seiten

4 Primärenergiebedarf, Kohlendioxidemissionen und Gesamtenergieeffizienz-Faktor

4.1 Umrechnung der Anteile des Endenergiebedarfs

Zur Umrechnung der Anteile des Endenergiebedarfes in den Primärenergiebedarf und in die Kohlendioxidemissionen sind folgende Größen erforderlich:

- Zur Umrechnung des kombinierten Heizenergiebedarfes exklusive des entsprechenden Hilfsenergiebedarfes ist Formel (188) aus ÖNORM H 5056 zu verwenden und mit den energieträgerbezogenen Konversionsfaktoren zu multiplizieren:
 - $O \quad \mathsf{HEB}_{\mathsf{komb},\mathsf{BGF},\mathsf{a}} = \mathsf{HEB}_{\mathsf{BGF},\mathsf{a}} \mathsf{HEB}_{\mathsf{komb},\mathsf{HE}}$
- Zur Umrechnung des Hilfsenergiebedarfs für den kombinierten Heizenergiebedarf ist Formel (154) aus ÖNORM H 5056 zu verwenden und mit den Konversionsfaktoren für elektrischen Strom zu multiplizieren:
 - \circ HEB_{komb,HE} = Q_{komb,HE} / BGF
- Zur Umrechnung des getrennten Heizenergiebedarfes für Raumheizung exklusive des entsprechenden Hilfsenergiebedarfes ist folgender Beitrag zu verwenden und mit den energieträgerbezogenen Konversionsfaktoren zu multiplizieren:
 - \circ HEB_{H,BGF,a} = HEB_{BGF,a} WWEB_{BGF,a} HEB_{H,HE}
- Zur Umrechnung des Hilfsenergiebedarfs für den getrennten Heizenergiebedarf für Raumheizung ist Formel (166) aus ÖNORM H 5056 zu verwenden und mit den Konversionsfaktoren für elektrischen Strom zu multiplizieren:
 - O HEB_{H,HE} = $(Q_{H,HE} + Q_{H,Sol,HE} + Q_{H,WP,HE}) / BGF$
- Zur Umrechnung des Luftförderenergiebedarfs außerhalb der Kühlperiode ist folgender Beitrag zu verwenden und mit den Konversionsfaktoren für elektrischen Strom zu multiplizieren:
 - o LFEB_{H,HE} = $Q_{LF,h}$ / BGF
- Zur Umrechnung des getrennten Heizenergiebedarfes für Warmwasser exklusive des entsprechenden Hilfsenergiebedarfes ist Formel (187 und 193) aus ÖNORM H 5056 zu verwenden und mit den energieträgerbezogenen Konversionsfaktoren zu multiplizieren:
 - \sim WWEB_{BGF,a}= WWWB_{BGF,a} + HTEB_{TW,BGF,a} HEB_{TW,HE}
- Zur Umrechnung des Hilfsenergiebedarfs für den getrennten Heizenergiebedarf für Warmwasser ist Formel (155) aus ÖNORM H 5056 zu verwenden und mit den Konversionsfaktoren für elektrischen Strom zu multiplizieren:
 - \circ HEB_{TW.HE} = (Q_{TW.HE} + Q_{TW.Sol.HE} + Q_{TW.WP.HE}) / BGF
- Zur Umrechnung des Befeuchtungsenergiebedarfes ist Formel (185a und b) aus ÖNORM H 5056 zu verwenden und mit den energieträgerbezogenen Konversionsfaktoren zu multiplizieren:
 - BefEB = Q_{BefEB} / BGF

LEI	TFADEN ENERGIET	ECHNISCHES VERHA	ALTEN VON GEBÄUDE	N
Ausgabe: Dezember 2011	Beschluss: 30.12.2011	Ersetzt Ausgabe: Oktober 2011	OIB-Zahl OIB-330.6-002/12	Seite 9 von 28 Seiten

 Zur Umrechnung des Kühlenergiebedarfes exklusive des entsprechenden Hilfsenergiebedarfes ist Formel (46) aus ÖNORM H 5058 zu verwenden und mit den energieträgerbezogenen Konversionsfaktoren zu multiplizieren:

o
$$KEB_{BGF,a} \rightarrow KEB_{BGF,a} = KEB_{BGF,a} - KEB_{HE,BGF,a}$$

• Zur Umrechnung des Luftförderenergiebedarfs während der Kühlperiode ist folgender Beitrag zu verwenden und mit den Konversionsfaktoren für elektrischen Strom zu multiplizieren:

o
$$LFEB_{C,HE} = Q_{LF,c} / BGF$$

 Zur Umrechnung des Hilfsenergiebedarfs für den Kühlenergiebedarf ist Formel (28) aus ÖNORM H 5058 zu verwenden und mit den Konversionsfaktoren für elektrischen Strom zu multiplizieren:

$$\circ$$
 KEB_{HE,BGF,a} = Q_{mech,pump,a} + Q_{kon,pump,a} + Q_{U,vent,a}

 Zur Umrechnung des Beleuchtungsenergiebedarfs sind die Werte aus Tabelle 1 aus ÖNORM H 5059 für LENI zu verwenden und mit den Konversionsfaktoren für elektrischen Strom zu multiplizieren.

4.2 Primärenergiebedarf

Für Wohngebäude sind folgende Berechnungen durchzuführen, wobei die Einzelergebnisse verwendet werden. Abweichend davon darf auch mit den spezifischen Werten (brutto-grundflächenbezogen) operiert werden.

	Wohngebäude						
		$\left(Q_{HEB,RH} - Q_{HEB,RH,HE} \right)$	×	$f_{PE,RH}$	=	$Q_{PEB,RH}$	
0	Q _{HEB,RH}	Q _{нев, кң} не	×	$f_{PE,el}$	=	Q _{РЕВ, RҢНЕ}	
Q_{HEB}		$\left(Q_{HEB,TW} - Q_{HEB,TW,HE}\right)$	×	f _{PE,TW}	=	Q _{PEB,TW}	
	$Q_{HEB,TW}$	Q _{HEB,TW,HE}	×	f _{PE,el}	=	Q _{PEB,TW,HE}	
$Q_{LFEB,h}$	$Q_{LFEB,h}$	$Q_{LFEB,h}$	×	f _{PE,el}	=	Q _{PEB,LFEB,h}	
Q _{HHSB}	Q _{HHSB}	Q _{HHSB}	×	f _{PE,el}	=	Q _{PEB,HHSB}	
		Σ			=	Q_{PEB}	$\times \frac{1}{BGF} = PEB$

LEI	TFADEN ENERGIET	ECHNISCHES VERHA	ALTEN VON GEBÄUDE	N
Ausgabe: Dezember 2011	Beschluss: 30.12.2011	Ersetzt Ausgabe: Oktober 2011	OIB-Zahl OIB-330.6-002/12	Seite 10 von 28 Seiten

Für Nicht-Wohngebäude sind folgende Berechnungen durchzuführen, wobei die Einzelergebnisse verwendet werden. Abweichend davon darf auch mit den spezifischen Werten (brutto-grundflächenbezogen) operiert werden.

	Nicht-Wohngebäude								
	0	$\left(Q_{HEB,RH} - Q_{HEB,RH,HE}\right)$	×	$f_{\rm PE,RH}$	=	$Q_{PEB,RH}$			
0	$Q_{HEB,RH}$	Q _{неврен} не	×	$f_{PE,el}$	=	$Q_{PEB,RH,HE}$			
Q _{HEB}	0	$\left(Q_{HEB,TW} - Q_{HEB,TW,HE}\right)$	×	$f_{PE,TW}$	=	$Q_{PEB,TW}$			
	Q _{HEB,TW}	$Q_{HEB,TW,HE}$	×	$f_{PE,el}$	=	$Q_{PEB,TW,HE}$			
Q _{BefEB}	Q _{BefEB}	Q_{BefEB}	×	f _{PE,Bef}	=	Q _{PEB,BefEB}			
$Q_{LFEB,h}$	$Q_{LFEB,h}$	$Q_{LFEB,h}$	×	$f_{PE,el}$	=	$Q_{PEB,LFEB,h}$			
0	0	$\left(Q_{KEB} - Q_{KEB,HE} \right)$	×	$f_{PE,el}$	=	$Q_{PEB,KEB}$			
Q _{KEB}	Q_{KEB}	Q _{KEB,HE}	×	$f_{PE,el}$	=	$Q_{PEB,KEB,HE}$			
Q _{LFEB,c}	$Q_{LFEB,c}$	$Q_{LFEB,c}$	×	$f_{PE,el}$	=	$Q_{PEB,LFEB,c}$			
Q _{BelEB}	Q _{BelEB}	Q_{BelEB}	×	f _{PE,el}	=	Q _{PEB,BelEB}			
Q_{BSB}	Q_{BSB}	Q_{BSB}	×	$f_{PE,el}$	=	$Q_{PEB,BSB}$			
		Σ			=	Q_{PEB}	$\times \frac{1}{BGF} = PEB$		

4.3 Kohlendioxidemissionen

Für Wohngebäude sind folgende Berechnungen durchzuführen, wobei die Einzelergebnisse verwendet werden. Abweichend davon darf auch mit den spezifischen Werten (brutto-grundflächenbezogen) operiert werden.

	Wohngebäude									
	0	$\left(Q_{HEB,RH} - Q_{HEB,RH,HE} \right)$	×	f _{CO2,RH}	=	$Q_{\rm CO2,RH}$				
	$Q_{HEB,RH}$	$Q_{HEBRHHE}$	×	$f_{\rm CO2,el}$	=	Q _{CO2,RH,HE}				
Q _{HEB}		$\left(Q_{HEB,TW} - Q_{HEB,TW,HE} \right)$	×	$f_{PE,TW}$	=	Q _{CO2,TW}				
	Q _{HEB,TW}	$Q_{HEB,TW,HE}$	×	f _{CO2,el}	=	Q _{CO2,TW,HE}				
Q _{LFEB,h}	$Q_{LFEB,h}$	$Q_{LFEB,h}$	×	f _{CO2,el}	=	Q _{CO2,LFEB,h}				
Q _{HHSB}	Q _{HHSB}	Q_{HHSB}	×	f _{CO2,el}	=	Q _{CO2,HHSB}				
		Σ			=	Q_{PEB}	$\times \frac{1}{BGF} = CO2$			

LEI	TFADEN ENERGIET	ECHNISCHES VERHA	ALTEN VON GEBÄUDE	N
Ausgabe: Dezember 2011	Beschluss: 30.12.2011	Ersetzt Ausgabe: Oktober 2011	OIB-Zahl OIB-330.6-002/12	Seite 11 von 28 Seiten

Für Nicht-Wohngebäude sind folgende Berechnungen durchzuführen, wobei die Einzelergebnisse verwendet werden. Abweichend davon darf auch mit den spezifischen Werten (brutto-grundflächenbezogen) operiert werden.

	Nicht-Wohngebäude									
	0	$\left(Q_{HEB,RH} - Q_{HEB,RH,HE} \right)$	×	f _{CO2,RH}	=	Q _{CO2,RH}				
0	$Q_{HEB,RH}$	$Q_{HEBRH,HE}$	×	f _{CO2,el}	=	Q _{CO2,RH,HE}				
Q_{HEB}	0	$\left(Q_{HEB,TW} - Q_{HEB,TW,HE}\right)$	×	f _{CO2,TW}	=	Q _{CO2,TW}				
	$Q_{HEB,TW}$	$Q_{HEB,TW,HE}$	×	f _{CO2,el}	=	Q _{CO2,TW,HE}				
Q_{BefEB}	Q_{BefEB}	Q_{BefEB}	×	f _{CO2,Bef}	=	Q _{CO2,BefEB}				
$Q_{LFEB,h}$	$Q_{LFEB,h}$	$Q_{LFEB,h}$	×	f _{CO2,el}	=	$Q_{CO2,LFEB,h}$				
0	0	$\left(Q_{KEB} - Q_{KEB,HE} \right)$	×	f _{CO2,el}	=	Q _{CO2,KEB}				
Q_{KEB}	Q_{KEB}	$Q_{KEB,HE}$	×	f _{CO2,el}	=	Q _{CO2,KEB,HE}				
Q _{LFEB,c}	Q _{LFEB,c}	$Q_{LFEB,c}$	×	f _{CO2,el}	=	Q _{CO2,LFEB,c}				
Q _{BelEB}	Q _{BelEB}	Q_{BelEB}	×	f _{CO2,el}	=	Q _{CO2,BelEB}				
Q _{BSB}	Q_{BSB}	Q_BSB	×	f _{CO2,el}	=	Q _{CO2,BSB}				
		Σ			=	Q_{CO2}	$\times \frac{1}{BGF} = CO2$			

4.4 Gesamtenergieeffizienz-Faktor

4.4.1 Allgemeines

Der Gesamtenergieeffizienz-Faktor wird als Relation des Endenergiebedarfs $\mathsf{EEB}_\mathsf{lst}$ und des Referenzwertes $\mathsf{EEB}_\mathsf{Ref}$ ermittelt. Dabei ist wie folgt vorzugehen:

- Der Endenergiebedarf EEB_{Ist} entspricht dem spezifischen Endenergiebedarf EEB_{BGF} bezogen auf die konditionierte Brutto-Grundfläche und wird wie folgt berechnet.
 - o $EEB_{lst} = EEB_{BGF}$
- Dabei kann seine Berechnung alternativ wie folgt geschrieben werden:
 - o Für WG: $EEB_{lst} = HWB_{lst} + WWWB_{Def} + HTEB_{lst} + HHSB_{Def}$
 - \circ Für NWG: EEB_{lst} = HWB_{lst} + WWWB_{Def} + HTEB_{lst} + KEB_{lst} + BeIEB_{Def} + BSB_{Def}
- Grundsätzlich können der HHSB_{Def}, der BelEB_{Def} und BSB_{Def} ersetzt werden durch HHSB_{lst}, BelEB_{lst} und BSB_{lst}, wobei beispielsweise (NPVE ... Netto-Photovoltaik-Ertrag) gilt:
 - \circ HHSB_{lst} = HHSB_{Def} NPVE
 - BelEB_{lst} = BelEB_{Def} NPVE
 - \circ BSB_{lst} = BSB_{Def} NPVE
- An dieser Stelle sei festgehalten, dass selbstverständlich ein BelEB_{lst} auch exakt nach Berechnung gemäß EN 15193 ermittelt werden kann und daher von BelEB_{Def} verschieden sein kann.
- Ebenso sei festgehalten, dass ein Netto-Photovoltaikertrag NPVE gemäß EN 15316-4-6 berechnet werden kann, wobei als Bedingung einzuhalten ist, dass der gesamte Strombedarf je Monat des Gebäudes nicht durch den in Rechnung gestellten und der Bilanzierung zugeführten NPVE übertrof-

LEI	TFADEN ENERGIET	ECHNISCHES VERHA	ALTEN VON GEBÄUDE	N
Ausgabe: Dezember 2011	Beschluss: 30.12.2011	Ersetzt Ausgabe: Oktober 2011	OIB-Zahl OIB-330.6-002/12	Seite 12 von 28 Seiten

fen werden darf (das heißt: Netzeinspeisungen dürfen nicht zur Verminderung des Endenergiebedarfs verwendet werden).

4.4.2 Berechnung des Referenzwerts für Wohngebäude (SK)

Zur Berechnung des Referenzwertes EEB_{Ref} ist für Wohngebäude wie folgt vorzugehen:

- o Aus der bereits durchgeführten Berechnung für EEB_{lst} sind folgende Ergebnisse bekannt:
 - Charakteristische Länge I_c
 - Heizwärmebedarf für das Referenzklima HWB_{RK}
 - Heizwärmebedarf für das Standortklima HWB_{SK}
 - Endenergiebedarf f
 ür das Standortklima EEB_{lst}
- Es wird ein Temperaturfaktor TF berechnet.
 - $TF = HWB_{SK} / HWB_{RK}$
- o Um nun die Bezugsgröße EEB₂₆ berechnen zu können, ist wie folgt vorzugehen:
 - $HWB_{26} = 26 \times (1 + 2.0 / I_c) \times TF$
 - Für Wärmepumpen: $UW_{26} = (HWB_{26} + WWWB) \times (1 1 / JAZ_{26,WPT})$
 - HEB₂₆ = (HWB₂₆ + WWWB) $x e_{AWZ}$
 - EEB₂₆ = HEB₂₆ + HHSB
- o Um nun f_{GEE} auszurechnen, hat man nur mehr die folgende Berechnung durchzuführen:
 - $f_{GEE} = EEB_{lst} / EEB_{26}$
- o Für Wärmepumpen gilt gesondert:
 - $UW_{26} = (HWB_{26} + WWWB) \times (1 1 / JAZ_{26,WPT})$
 - $UW_{lst} = (HWB_{lst} + WWWB) \times (1 1 / JAZ_{lst,WPT})$
 - $f_{GEE.Umw} = UW_{lst} / UW_{26}$
 - $f_{GEE,WP} = EEB_{lst} / EEB_{26}$
 - $f_{GEE} = (2 \times f_{GEE,WP} + f_{GEE,Umw}) / 3$
 - $JAZ_{lst,WPT} = JAZ_{komb}$
 - $\quad JAZ_{TW} = (Q_{el,TW} + Q_{Umw,TW}) / (Q_{el,TW} + Q_{TW,WP,HE})$

 - $JAZ_{komb} = (Q_{el,RH} + Q_{Umw,RH} + Q_{el,TW} + Q_{Umw,TW}) / (Q_{el,RH} + Q_{RH,WP,HE} + Q_{el,TW} + Q_{TW,WP,HE})$

(UW... Umweltwärmeertrag der Wärmepumpe, JAZ... Jahresarbeitszahl, WPT... Wärmepumpentechnologie)

4.4.3 Berechnung des Referenzwerts für Wohngebäude (RK)

Zur Berechnung des Referenzwertes EEB_{Ref,RK} ist die Berechnung unter Zugrundelegung des Referenzklimas gemäß ÖNORM B 8110-5 bzw. gemäß Punkt 2.2 dieses Leitfadens durchzuführen.

4.4.4 Berechnung des Referenzwerts für Nicht-Wohngebäude (SK)

Zur Berechnung des Referenzwertes EEB_{Ref} ist für Nicht-Wohngebäude wie folgt vorzugehen:

- Aus der bereits durchgeführten Berechnung für EEB_{lst} sind folgende Ergebnisse bekannt:
 - Charakteristische Länge I_c
 - Heizwärmebedarf für das Referenzklima HWB_{RK}
 - Heizwärmebedarf für das Standortklima HWB_{SK}
 - Endenergiebedarf für das Standortklima EEB_{lst}
- Es wird ein Temperaturfaktor TF berechnet.
 - $TF = HWB_{SK} / HWB_{RK}$
- Es wird ein Strahlungsfaktor SF berechnet.
 - SF = I_{SK} / I_{RK}
 - I_{SK} = Jahresstrahlungssumme des Standortklimas auf die horizontale Fläche
 - I_{RK} = Jahresstrahlungssumme des Referenzklimas auf die horizontale Fläche
- o Um nun die Bezugsgröße EEB₂₆ berechnen zu können, ist wie folgt vorzugehen:
 - $HWB_{26} = 26 \times (1 + 2.0 / I_c) \times TF \times VB_B / BGF / 3$
 - KB₂₆ = KB_{NP} x SF
 - KEB₂₆ = $f_{KT} \times 1,33 \times KB_{26}$
 - Bei nicht vorhandener Kühlung: f_{KT} = 0
 - Kühlung mittels Absorptionskältemaschine: f_{KT} = 1,5

LEI	TFADEN ENERGIET	ECHNISCHES VERHA	ALTEN VON GEBÄUDE	N
Ausgabe: Dezember 2011	Beschluss: 30.12.2011	Ersetzt Ausgabe: Oktober 2011	OIB-Zahl OIB-330.6-002/12	Seite 13 von 28 Seiten

- Kühlung mittels Kompressionskältemaschine: f_{KT} = 0,3
- $HEB_{26} = (HWB_{26} + WWWB) \times e_{AWZ}$
- EEB₂₆ = HEB₂₆ + KEB₂₆ + BelEB + BSB
 Um nun f_{GEE} auszurechnen, hat man nur mehr die folgende Berechnung durchzuführen:
 - $f_{GEE} = EEB_{lst} / EEB_{26}$
- o Für Wärmepumpen gilt gesondert:
 - analog zu WG

KB _{NP}	Büro	Schule	Hochschule	Spital	Pflege	Pension	Hotel	Gasthaus	Veranstaltung	Sport	Verkauf	Hallenbad
[kWh/m²a]	30	30	50	50	30	20	40	60	60	40	30	60

4.4.5 Berechnung des Referenzwerts für Nicht-Wohngebäude (RK)

Zur Berechnung des Referenzwertes EEB_{Ref.RK} ist die Berechnung unter Zugrundelegung des Referenzklimas gemäß ÖNORM B 8110-5 bzw. gemäß Punkt 2.2 dieses Leitfadens durchzuführen.

4.4.6 Energieaufwandszahlen (und Jahresarbeitszahlen)

Für Gebäude BGF ≤ 400 m² ist die Energieaufwandszahl e_{AWZ} zur Berechnung des Referenzheizenergiebedarfes in Abhängigkeit von Ic zwischen folgenden Werten zu interpolieren:

l _c	e _{AWZ,f.f.}	e _{AWZ,f.fl.}	e _{AWZ,f.gf.}	e _{AWZ,Bio}	e _{AWZ,FW}
[m]	[-]	[-]	[-]	[-]	[-]
0,92	1,96	1,45	1,37	1,69	1,26
1,33	1,82	1,40	1,33	1,60	1,22
1,60	1,70	1,30	1,25	1,52	1,19
2,18	1,63	1,27	1,23	1,48	1,19

Wobei bedeutet:

f.f.	fossil fest → Kohle
f.fl.	fossil flüssig → Heizöl
f.gf.	fossil gasförmig → Erdgas
Bio	Biomasse, Pellets
FW	Fernwärme

l _c	e _{AWZ,LW-WP}	e _{AWZ,SW-WP(f)}	e _{AWZ,SW-WP(t)}	e _{AWZ,GW-WP}	e _{AWZ,DX-WP}
[m]	[-]	[-]	[-]	[-]	[-]
0,92	0,37	0,27	0,29	0,22	0,27
1,33	0,35	0,26	0,27	0,21	0,26
1,60	0,34	0,26	0,27	0,20	0,25
2,18	0,34	0,26	0,27	0,21	0,25

l _c	JAZ _{26,LW-WP}	JAZ _{26,SW-WP(f)}	JAZ _{26,SW-WP(t)}	JAZ _{26,GW-WP}	JAZ _{26,DX-WP}
[m]	[-]	[-]	[-]	[-]	[-]
0,92	3,03	3,62	3,47	4,47	4,24
1,33	3,13	3,66	3,51	4,53	4,30
1,60	3,14	3,68	3,5 <mark>3</mark>	4,55	4,32
2,18	3,11	3,65	3,49	4,48	4,28

Wobei bedeutet:

LW-WP	Luft/Wasser-Wärmepumpe
SW-WP(f)	Sole/Wasser-Wärmepumpe (Flachkollektor)
SW-WP(t)	Sole/Wasser-Wärmepumpe (Tiefensonde)
GW-WP	Wasser/Wasser-Wärmepumpe (Grundwasser)
DX-WP	Direktverdampfer-Wärmepumpe

LEITFADEN ENERGIETECHNISCHES VERHALTEN VON GEBÄUDEN								
Ausgabe: Dezember 2011	Beschluss: 30.12.2011	Ersetzt Ausgabe: Oktober 2011	OIB-Zahl OIB-330.6-002/12	Seite 14 von 28 Seiten				

Für Gebäude BGF > 400 m² ist die Energieaufwandszahl e_{AWZ} zur Berechnung des Referenzheizenergiebedarfes in Abhängigkeit von I_c zwischen folgenden Werten zu interpolieren:

l _c	e _{AWZ,f.f.}	e _{AWZ,f.fl.}	e _{AWZ,f.gf.}	e _{AWZ,Bio}	e _{AWZ,FW}
[m]	[-]	[-]	[-]	[-]	[-]
0,92	2,32	1,78	1,69	1,96	1,54
1,33	2,09	1,65	1,57	1,79	1,43
1,60	1,89	1,47	1,41	1,65	1,35
2,18	1,78	1,40	1,35	1,58	1,32
2,53	1,70	1,37	1,32	1,52	1,29
3,20	1,64	1,36	1,31	1,49	1,29
3,56	1,58	1,35	1,30	1,46	1,29
4,17	1,55	1,35	1,30	1,44	1,29
4,47	1,53	1,35	1,30	1,43	1,29

l _c	e _{AWZ,LW-WP}	e _{AWZ,SW-WP(f)}	e _{AWZ,SW-WP(t)}	e _{AWZ,GW-WP}	e _{AWZ,DX-WP}
[m]	[-]	[-]	[-]	[-]	[-]
0,92	0,61	0,45	0,48	0,39	0,44
1,33	0,57	0,40	0,42	0,34	0,39
1,60	0,48	0,36	0,38	0,31	0,35
2,18	0,47	0,35	0,37	0,30	0,35
2,53	0,45	0,34	0,36	0,29	0,34
3,20	0,46	0,34	0,36	0,29	0,34
3,56	0,45	0,34	0,36	0,29	0,34
4,17	0,45	0,34	0,36	0,30	0,34
4,47	0,45	0,34	0,36	0,30	0,34

l _c	JAZ _{26,LW-WP}	JAZ _{26,SW-WP(f)}	JAZ _{26,SW-WP(t)}	JAZ _{26,GW-WP}	JAZ _{26,DX-WP}
[m]	[-]	[-]	[-]	[-]	[-]
0,92	2,41	2,95	2,79	3,41	3,37
1,33	2,36	3,06	2,90	3,55	3,51
1,60	2,63	3,10	2,94	3,62	3,57
2,18	2,61	3,08	2,92	3,58	3,53
2,53	2,61	3,08	2,92	3,58	3,54
3,20	<mark>2,58</mark>	3,05	2,89	3,53	3,49
3,56	2,58	3,05	2,88	3,5 <mark>2</mark>	3,49
4,17	2,57	3,03	2,86	3,49	3,47
4,47	2,57	3,03	2,86	3,48	3,46

LEITFADEN ENERGIETECHNISCHES VERHALTEN VON GEBÄUDEN								
Ausgabe: Dezember 2011	Beschluss: 30.12.2011	Ersetzt Ausgabe: Oktober 2011	OIB-Zahl OIB-330.6-002/12	Seite 15 von 28 Seiten				

5 Vereinfachtes Verfahren

5.1 Anwendungsbereich

Das vereinfachte Verfahren ist ausschließlich für bestehende Gebäude anzuwenden, wobei Vereinfachungen bei der Erfassung der Gebäudegeometrie, der Bauphysik und der Haustechnik vorgenommen werden können.

5.2 Gebäudegeometrie

Im vereinfachten Verfahren ist die Gebäudegeometrie zumindest wie folgt zu erfassen:

- 5.2.1 Dem Gebäude ist ein volumengleicher Quader (Grundfläche entweder rechteckig, L-förmig, T-förmig, U-förmig oder O-förmig) einzuschreiben, wobei Vorsprünge (z.B. Erker) oder Einsprünge (z.B. Loggien) vorerst vernachlässigt werden. Dabei ist im Detail wie folgt vorzugehen:
 - Auffinden der Grundfläche (flächengleich) unter Berücksichtigung der oben erwähnten Vernachlässigungen
 - o Festlegung der Geschoßanzahl (nur konditionierte Geschosse)
 - o Festlegung der durchschnittlichen Brutto-Geschoßhöhe
 - Festlegung der durchschnittlichen Netto-Geschoßhöhe
- 5.2.2 Ermittlung des Grundvolumens der konditionierten Geschoße und deren Oberfläche nach der vereinfachten Geometrie gemäß Punkt 5.2.1.
- 5.2.3 Abschätzung des Anteils der Fensterflächen an den Fassadenflächen und geeignete Zuordnung zu den Himmelsrichtungen.
- 5.2.4 Allfälligen konditionierten Dachräumen sind in analoger Weise (gemäß der Punkte 5.2.1 bis 5.2.3) ein entsprechendes Volumen, die zugehörige Grundfläche, die zugehörigen Außenbauteilflächen und die Flächenanteile von Dachflächenfenstern einschließlich der jeweiligen Orientierung zuzuordnen.
- 5.2.5 Erfassung der folgenden Elemente, wobei Vor- bzw. Einsprünge und Dacheinschnitte oder aufbauten von nicht mehr als 0,50 m unberücksichtigt bleiben:
 - o Horizontale Vor- oder Einsprünge (z.B. Stiegenhäuser)
 - Vertikale Vor- oder Einsprünge (z.B. Erker, Loggien)
 - o Dacheinschnitte oder -aufbauten (z.B. Terrassen, Gaupen)
- 5.2.6 Modifikation der sich aus den Punkten 5.2.1 bis 5.2.4 ergebenden Oberfläche durch Multiplikation der Fassaden- bzw. Dachfläche, je nach Anzahl der Vor- bzw. Einsprünge und Dacheinschnitte oder –aufbauten gemäß Punkt 4.2.5 mit 1,05ⁿ. Dabei ist n die Anzahl der horizontalen und/oder vertikalen Vor- bzw. Einsprünge, Dacheinschnitte oder –aufbauten.

Folgende häufig vorkommende Beispiele können angeführt werden:

- Vorgesetztes Stiegenhaus (konditioniert): 1,05¹ (n = 1)
- Erker auf einer Fassadenfläche: 1,05² (n = 2, da vertikal und horizontal gilt unabhängig von der Anzahl der Erker; n_{max} = 2)
- o Loggien auf zwei Fassadenflächen entlang einer Fensterachse: $1,05^2$ (n = 2; gilt unabhängig von der Anzahl der Loggien; $n_{max} = 2$)
- o Dachgaupen auf zwei Dachflächen $1,05^2$ (n = 2; gilt unabhängig von der Anzahl der Dachgaupen; $n_{max} = 2$)

LEITFADEN ENERGIETECHNISCHES VERHALTEN VON GEBÄUDEN								
Ausgabe: Dezember 2011	Beschluss: 30.12.2011	Ersetzt Ausgabe: Oktober 2011	OIB-Zahl OIB-330.6-002/12	Seite 16 von 28 Seiten				

- 5.2.7 Durch die Modifikationen gemäß Punkt 5.2.6 wird die Fassadenfläche entsprechend vergrößert. Die Brutto-Grundfläche BGF bleibt von diesen Modifikationen unberührt.
- 5.2.8 Weitere Berechnung mit den verfügbaren Programmen auf Basis der so erhaltenen Massenermittlung.

5.3 Bauphysik

Zur Vereinfachung der Erfassung der Wärmedurchgangskoeffizienten (U-Werte) können entweder Default-Werte gemäß Punkt 5.3.1 oder von den Ländern festgesetzte Standardwerte gemäß Punkt 5.3.2, die den jeweiligen landesgesetzlichen Anforderungen entsprechen, herangezogen werden. Unterschiedliche thermische Qualitäten von Einzelbauteilen sind zu berücksichtigen (z.B. alte und neue Fenster, gedämmte und ungedämmte Fassaden etc.). Sind für einzelne Bauteile konkrete U-Werte bekannt, sind diese jedenfalls heranzuziehen.

5.3.1 Default-Werte

Für Gebäude, für die unter Punkt 5.3.2 keine Werte angegeben sind (z.B. für ältere Gebäude), können folgende Wärmedurchgangskoeffizienten (U-Werte) herangezogen werden:

Epoche / Gebäudetyp	KD	OD	AW	DF	FE	g	AT
vor 1900 EFH	1,25	0,75	1,55	1,30	2,50	0,67	2,50
vor 1900 MFH	1,25	0,75	1,55	1,30	2,50	0,67	2,50
ab 1900 EFH	1,20	1,20	2,00	0,60	2,50	0,67	2,50
ab 1900 MFH	1,20	1,20	1,50	0,60	2,50	0,67	2,50
ab 1945 EFH	1,95	1,35	1,75	1,30	2,50	0,67	2,50
ab 1945 MFH	1,10	1,35	1,30	1,30	2,50	0,67	2,50
ab 1960 EFH	1,35	0,55	1,20	0,55	3,00	0,67	2,50
ab 1960 MFH	1,35	0,55	1,20	0,55	3,00	0,67	2,50
Systembauweise	1,10	1,05	1,15	0,45	2,50	0,67	2,50
Montagebauweise	0,85	1,00	0,70	0,45	3,00	0,67	2,50

Bei den angegebenen Werten handelt es sich grundsätzlich um Mittelwerte aus der Erfahrung und nicht um schlechtest denkbare Werte.

rung und nicht um schlechtest denkbare Werte	<u>,</u>
Legende:	Systembauweise Bauweise basierend auf
KD Kellerdecke	systemisierter Mauerwerksbauweise o.ä.
OD Oberste Geschoßdecke	Markanika sia Barainakanian Ia (
AW Außenwand	Montagebauweise Bauweise basierend auf Fertigteilen aus Beton mit zwischenliegender
DF Dachfläche	Wärmedämmung
FE Fenster	
g Gesamtenergiedurchlassgrad	Für alle nicht erwähnten Bauteile wie z.B.
AT Außentüren	Kniestockmauerwerk, Abseitenwände, Absei-
EFH Einfamilienhaus	tendecken sind grundsätzlich die entspre- chenden Werte für Außenbauteile zu ver-
MFH Mehrfamilienhaus	wenden.

LEITFADEN ENERGIETECHNISCHES VERHALTEN VON GEBÄUDEN Ausgabe: Beschluss: Ersetzt Ausgabe: OIB-Zahl Seite 17 Dezember 2011 Oktober 2011 OIB-330.6-002/12 von 28 Seiten

5.3.2 Von den einzelnen Bundesländern festgelegte Wärmedurchgangskoeffizienten

In den folgenden Tabellen sind die in den einzelnen landesgesetzlichen Bestimmungen enthaltenen Wärmedurchgangskoeffizienten (U-Werte) angegeben.

Burgenland	KD	OD	AW	DF	FE	g	AT
ab 01. 01. 1988	0,60	0,60	0,70	0,30	2,50	0,67	2,50
ab 02. 02. 1998	0,40	0,40	0,45	0,25	1,70	0,67	1,70
ab 02. 04. 2002	0,35	0,35	0,38	0,20	1,70	0,67	1,70

Kärnten	KD	OD	AW	DF	FE	g	AT
ab 01. 10. 1980	0,60	0,30	0,70	0,30	2,50	0,67	2,50
ab 01. 10. 1993	0,50	0,30	0,50	0,30	2,50	0,67	2,50
ab 21. 03. 1997	0,40	0,25	0,40	0,25	1,80	0,67	1,80
ab 01. 01. 1981 WBF	0,50	0,30	0,60	0,30	2,50	0,67	2,50
ab 01. 01. 1983 WBF	0,50	0,30	0,57	0,30	2,50	0,67	2,50
ab 13. 03. 1985 WBF	0,50	0,30	0,60	0,30	2,50	0,67	2,50

Niederösterreich	KD	OD	AW	DF	FE	g	AT
ab 01.1982	0,80	0,30	0,70	0,30	2,50	0,67	2,50
ab 01.1988	0,70	0,25	0,50	0,25	2,50	0,67	2,50
ab 03.1996	0,50	0,22	0,40	0,22	1,80	0,67	1,80

Oberösterreich	KD	OD	AW	DF	FE	g	AT
ab 1976	0,83	0,65	1,02	0,69	2,60	0,67	2,60
ab 1981	0.60	0,30	0,70	0,30	2,50	0,67	2,50
ab 01. 02. 1983	0,60	0,30	0,70	0,30	2,50	0,67	2,50
ab 1985	0,50	0,30	0,50	0,30	2,50	0,67	2,50
ab 1994	0,45	0,25	0,50	0,25	1,90	0,67	1,90
ab 1999	0,45	0,25	0,50	0,25	1,90	0,67	1,90

Salzburg	KD	OD	AW	DF	FE	g	AT
1982 – 31. 05. 2003	0,47	0,30	0,56	0,30	2,50	0,67	2,50
ab 01. 06. 2003	0,40	0,20	0,35	0,20	1,70	0,67	1,70

Steiermark	KD	OD	AW	DF	FE	g	AT
ab 1983 EFH	0,60	0,30	0,70	0,30	2,50	0,67	2,50
ab 1983 MFH	0,60	0,30	0,70	0,30	2,50	0,67	2,50
ab 1990 EFH	0,45	0,30	0,50	0,30	2,50	0,67	2,50
ab 1990 MFH	0,45	0,30	0,50	0,30	2,50	0,67	2,50
ab 1997 EFH	0,40	0,20	0,40	0,20	1,90	0,67	1,90
ab 1997 MFH	0,40	0,20	0,50	0,20	1,90	0,67	1,90
1984 -1990 MFH bei WBF	0,60	0,27	0,63	0,27	2,50	0,67	2,50

LEI	TFADEN ENERGIET	ECHNISCHES VERHA	ALTEN VON GEBÄUDE	N
Ausgabe: Dezember 2011	Beschluss: 30.12.2011	Ersetzt Ausgabe: Oktober 2011	OIB-Zahl OIB-330.6-002/12	Seite 18 von 28 Seiten

Tirol	KD	OD	AW	DF	FE	g	AT
ab 01. 05. 1981	0,50	0,30	0,50	0,30	2,50	0,67	2,50
ab 01. 11. 1985	0,50	0,30	0,50	0,30	2,50	0,67	2,50
ab 12. 10. 1998	0,40	0,20	0,35	0,20	1,70	0,67	1,70
ab 01. 01. 1998 bei Zusatz- förderung für NEH	0,35	0,20	0,27	0,20	1,50	0,67	1,50
ab 1.1.1999 bei Zusatzför- derung für NEH	0,35	0,18	0,27	0,18	1,50	0,67	1,50
ab 1.10.2003 bei WBF	0,35	0,18	0,27	0,18	1,50	0,67	1,50

Vorarlberg	KD	OD	AW	DF	FE	g	AT
ab 01. 01. 1983	0,70	0,30	0,50	0,50	2,50	0,67	2,50
ab 01. 01. 1997	0,50	0,25	0,35	0,35	1,80	0,67	1,90

Wien	KD	OD	AW	DF	FE	g	AT
ab 15. 11. 1976	0,85	0,71	1,00	0,71	2,50	0,67	2,50
ab 01. 10. 1993	0,40	0,20	0,50	0,20	1,90	0,67	1,90
ab 26. 10. 2001	0,45	0,25	0,50	0,25	1,90	0,67	1,90

5.4 Haustechnik

Für das vereinfachte Verfahren kann in Abhängigkeit vom Energieträger und der Wärmebereitstellung für Raumheizung und Warmwasser das Haustechniksystem aus folgenden Default-Systemen ausgewählt werden, mit denen die Berechnung gemäß ÖNORM H 5056 durchzuführen ist. Wenn genauere Angaben zum Haustechniksystem vorliegen, kann in der Berechnung die tatsächliche Ausführung verwendet werden. Bildet keiner der Default-Varianten die tatsächliche Ausführung ab, ist jedenfalls das Haustechniksystem in der Berechnung genau zu erfassen. Dies gilt jedenfalls für Anlagen zur Kühlung, Luftaufbereitung und Beleuchtung bei Nicht-Wohngebäuden.

Folgende Systeme dürfen herangezogen werden:

- für die Energieträger Gas und Öl jeweils die Systeme 1, 2 oder 3,
- für den fossilen Energieträger Kohle nur das System 1,
- für Biomasse (Stückholz / Hackgut) die Systeme 1 und 2 und
- für Holz-Pellets nur das System 2

System 1: Standardheizkessel (Systemtemperaturen 90°C/70°C)

- Objektdaten:
 - Gebäudezentrale Wärmebereitstellung, Warmwasserverteilung mit Zirkulationsleitung, Raumwärmeabgabe mit Radiatoren, Verteil- und Steigleitungen im unkonditionierten Gebäudebereich, Stich- und Anbindeleitungen im konditionierten Gebäudebereich, Baujahr des Kessels ist gleich Gebäudejahr, Armaturen ungedämmt, Anschlussteile des Wärmespeichers umgedämmt
- Warmwasser:
 - o Wärmeabgabe: Zweigriffarmaturen
 - Wärmeverteilung: ungedämmte Rohrleitungen
 - o Wärmespeicherung: indirekt beheizter Warmwasserspeicher
 - Wärmebereitstellung: ----
- Raumheizung:
 - o Wärmeabgabe: Heizkörper Regulierventil (von Hand betätigt)
 - Wärmeverteilung: ungedämmte Rohrleitungen
 - o Wärmespeicherung: ----
 - o Wärmebereitstellung: Standardheizkessel

LEI	TFADEN ENERGIET	ECHNISCHES VERHA	ALTEN VON GEBÄUDE	N
Ausgabe: Dezember 2011	Beschluss: 30.12.2011	Ersetzt Ausgabe: Oktober 2011	OIB-Zahl OIB-330.6-002/12	Seite 19 von 28 Seiten

System 2: Niedertemperaturkessel (Systemtemperaturen 70°C/55°C)

Objektdaten:

Gebäudezentrale Wärmebereitstellung, Warmwasserverteilung mit Zirkulationsleitung, Raumwärmeabgabe mit Radiatoren, Verteil- und Steigleitungen im unkonditionierten Gebäudebereich, Stich- und Anbindeleitungen im konditionierten Gebäudebereich, Baujahr des Kessels ist gleich Gebäudejahr, Armaturen ungedämmt, Anschlussteile des Wärmespeichers umgedämmt

Warmwasser:

- Wärmeabgabe: Zweigriffarmaturen
- o Wärmeverteilung: Verhältnis Dämmdicke zu Rohrdurchmesser ist 1/3
- Wärmespeicherung: indirekt beheizter Warmwasserspeicher
- o Wärmebereitstellung: ----

Raumheizung:

- o Wärmeabgabe: Einzelraumregelung mit Thermostatventilen
- Wärmeverteilung: Verhältnis Dämmdicke zu Rohrdurchmesser ist 1/3
- o Wärmespeicherung: ----
- o Wärmebereitstellung: Niedertemperaturkessel

System 3: Brennwertkessel (Systemtemperaturen 40°C/30°C)

Objektdaten:

Gebäudezentrale Wärmebereitstellung, Warmwasserverteilung mit Zirkulationsleitung, Raumwärmeabgabe mit Radiatoren, Verteil- und Steigleitungen im unkonditionierten Gebäudebereich, Stich- und Anbindeleitungen im konditionierten Gebäudebereich, Baujahr des Kessels ist gleich Gebäudejahr, Armaturen ungedämmt, Anschlussteile des Wärmespeichers umgedämmt

Warmwasser:

- o Wärmeabgabe: Zweigriffarmaturen
- Wärmeverteilung: Verhältnis Dämmdicke zu Rohrdurchmesser 2/3
- o Wärmespeicherung: indirekt beheizter Warmwasserspeicher
- Wärmebereitstellung: ----

Raumheizung:

- o Wärmeabgabe: Raumthermostat-Zonenregelung mit Zeitsteuerung
- o Wärmeverteilung: Verhältnis Dämmdicke zu Rohrdurchmesser 2/3
- o Wärmespeicherung: ----
- o Wärmebereitstellung: Brennwertkessel

System 4: Gaskombitherme (Systemtemperaturen 70°C/55°C)

Objektdaten:

 dezentrale Wärmebereitstellung, kombinierte Wärmebereitstellung für Warmwasser und Raumheizung, keine Zirkulationsleitung, Raumwärmeabgabe mit Radiatoren, keine Verteil- und Steigleitungen, Stich- und Anbindeleitungen im konditionierten Gebäudebereich, Armaturen ungedämmt

Warmwasser:

- o Wärmeabgabe: Zweigriffarmaturen
- o Wärmeverteilung: ungedämmte Rohrleitungen
- o Wärmespeicherung: kein
- o Wärmebereitstellung: ----

Raumheizung:

- Wärmeabgabe: Heizkörper-Regulierventil (von Hand betätigt)
- o Wärmeverteilung: ungedämmte Rohrleitungen
- o Wärmespeicherung: ----
- o Wärmebereitstellung: Gaskombitherme

System 5: Fernwärme (Systemtemperaturen 70°C/55°C)

· Objektdaten:

o Gebäudezentrale Wärmebereitstellung, kombinierte Wärmebereitstellung für Warmwasser und Raumheizung, Warmwasserverteilung mit Zirkulationsleitung, Raumwärmeabgabe mit Radiato-

LEI	TFADEN ENERGIET	ECHNISCHES VERHA	ALTEN VON GEBÄUDE	N
Ausgabe: Dezember 2011	Beschluss: 30.12.2011	Ersetzt Ausgabe: Oktober 2011	OIB-Zahl OIB-330.6-002/12	Seite 20 von 28 Seiten

ren, Verteil- und Steigleitungen im unkonditionierten Gebäudebereich, Stich- und Anbindeleitungen im konditionierten Gebäudebereich, Armaturen ungedämmt

- Warmwasser:
 - o Wärmeabgabe: Zweigriffarmaturen
 - o Wärmeverteilung: ungedämmte Rohleitungen
 - o Wärmespeicherung: kein
 - o Wärmebereitstellung: ----
- Raumheizung:
 - Wärmeabgabe: Heizkörper-Regulierventil (von Hand betätigt)
 - o Wärmeverteilung: ungedämmte Rohrleitungen
 - Wärmespeicherung: ----
 - o Wärmebereitstellung: Fernwärme

System 6: Einzelofen

- Objektdaten:
 - o dezentrale Wärmeversorgung, keine Verteil- und Steigleitungen, Stichleitungen im konditionierten Gebäudebereich, Armaturen ungedämmt, Anschlussteile des Wärmespeichers ungedämmt
- Warmwasser:
 - o Wärmeabgabe: Zweigriffarmaturen
 - o Wärmeverteilung: ungedämmte Rohrleitungen
 - o Wärmespeicherung und Wärmebereitstellung: direkt elektrisch beheizter Warmwasserspeicher
- Raumheizung:
 - o Wärmeabgabe: ----
 - o Wärmeverteilung: ----
 - o Wärmespeicherung: ----
 - o Wärmebereitstellung: Einzelofen

System 7: thermische Solaranlage (nur für Einfamilienhäuser)

- Objektdaten:
 - gebäudezentrale Wärmeversorgung, kombinierte Bereitstellung für Warmwasser und Raumheizung, Armaturen ungedämmt
- Warmwasser:
 - o Wärmeabgabe: Zweigriffarmaturen
 - Wärmeverteilung: Verhältnis Dämmdicke zu Rohrdurchmesser 1/3
 - o Wärmespeicherung: indirekt, Solarspeicher
 - Wärmebereitstellung: Aperturfläche 8 m², einfacher Solarkollektor, Ausrichtung Süd 40° Neigung
- Raumheizung: Systeme 1 oder 2

System 8: Wärmepumpe (Systemtemperaturen 40°C/30°C)

- Objektdaten:
 - Gebäudezentrale Wärmebereitstellung, kombinierte Wärmebereitstellung für Warmwasser und Raumheizung, Warmwasserverteilung mit Zirkulationsleitung, Raumwärmeabgabe mit Flächenheizung, Verteil- und Steigleitungen im unkonditionierten Gebäudebereich, Stich- und Anbindeleitungen im konditionierten Gebäudebereich, Armaturen ungedämmt, Anschlussteile des Wärmespeichers ungedämmt
- Warmwasser:
 - o Wärmeabgabe: Zweigriffarmaturen
 - o Wärmeverteilung: Verhältnis Dämmdicke zu Rohrdurchmesser ist 1/3
 - Wärmespeicherung: indirekt beheizter Warmwasserspeicher (Wärmepumpenspeicher)
 - o Wärmebereitstellung: Luftwarmwasserwärmepumpe
- Raumheizung:
 - o Wärmeabgabe: Raumthermostat-Zonenregelung mit Zeitsteuerung
 - Wärmeverteilung: Verhältnis Dämmdicke zu Rohrdurchmesser 1/3
 - o Wärmespeicherung: indirekt, Wärmepumpe
 - Wärmebereitstellung: ----

LEI	TFADEN ENERGIET	ECHNISCHES VERHA	ALTEN VON GEBÄUDE	N
Ausgabe: Dezember 2011	Beschluss: 30.12.2011	Ersetzt Ausgabe: Oktober 2011	OIB-Zahl OIB-330.6-002/12	Seite 21 von 28 Seiten

6 Empfehlung von Maßnahmen für bestehende Gebäude

6.1 Allgemeines

Auf Basis einer fachlichen Bewertung des Gebäudes anhand der erhobenen Bestandsdaten sind gegebenenfalls Ratschläge und Empfehlungen nach wirtschaftlichen Gesichtspunkten (siehe dazu ÖNORM B 8110-4 und ÖNORM M 7140) zu folgenden Maßnahmen zu verfassen:

- Maßnahmen zur Verbesserung der thermischen Qualität der Gebäudehülle,
- Maßnahmen zur Verbesserung der energetischen Effizienz der haustechnischen Anlagen,
- Maßnahmen zur verstärkten Nutzung erneuerbarer Energieträger,
- Maßnahmen zur Verbesserung organisatorischer Maßnahmen,
- Maßnahmen zur Reduktion der CO2-Emissionen.

In der Empfehlung sind jedenfalls folgende Maßnahmen auszuweisen:

- a) Maßnahmen, die erforderlich sind, um in die nächst bessere Klasse des Energieausweises zu gelangen und
- b) Maßnahmen, die erforderlich sind, um die aktuellen landesgesetzlichen Anforderungen für den Neubau zu erfüllen.

6.2 Gebäudehülle

Zu jenen Maßnahmen, die auf Grund der Bewertung der thermischen Qualität der Gebäudehülle erforderlich sind, können z.B. zählen:

- Dämmung der obersten Geschossdecke bzw. Dachfläche
- Anbringung einer außenliegenden Wärmedämmung
- Fenstertausch
- Dämmen der Kellerdecke

6.3 Haustechnik

Zu jenen Maßnahmen, die auf Grund der Bewertung der haustechnischen Anlagen erforderlich sind, können z.B. zählen:

- Dämmung der warmgehenden Leitungen in nicht konditionierten Räumen
- Einbau eines Regelsystems zur Berücksichtigung der Wärmegewinne
- Anpassung der Nennleistung des Wärmebereitstellungssystems an den zu befriedigenden Bedarf
- Einbau von leistungsoptimierten und gesteuerten Heizungspumpen
- Einregulierung/hydraulischer Abgleich
- Einbau von Wärmerückgewinnungsanlagen
- Anpassung der Luftmenge des Lüftungssystems an den zu befriedigenden Bedarf
- Optimierung der Betriebszeiten
- Free-Cooling
- Anpassung der Kälteleistung durch Installation von Kältespeichern
- Kraft-Wärme-Kälte-Nutzung
- vor Optimierung im Bereich der Beleuchtung ist genaue Berechnung erforderlich
- Optimierung der Tageslichtversorgung
- Optimierung der Effizienz der Leuchtmittel

LEI	TFADEN ENERGIET	ECHNISCHES VERHA	ALTEN VON GEBÄUDE	N
Ausgabe: Dezember 2011	Beschluss: 30.12.2011	Ersetzt Ausgabe: Oktober 2011	OIB-Zahl OIB-330.6-002/12	Seite 22 von 28 Seiten

7 Hinweise zur Befüllung der ersten beiden Seiten des Energieausweises

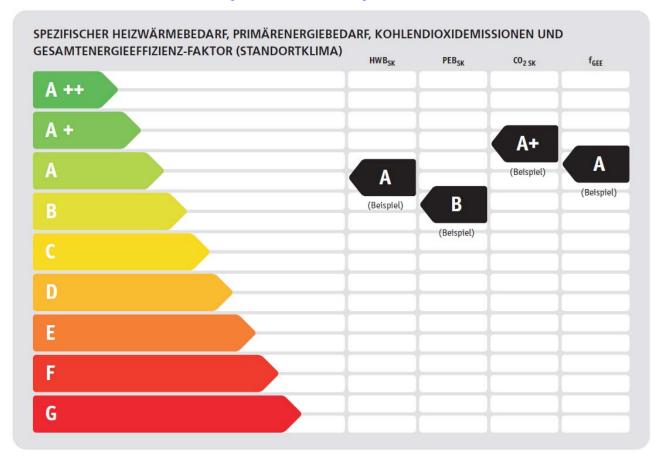
7.1 Allgemeines

Es werden Energieausweise für "Wohngebäude – WG", "Nicht-Wohngebäude – NWG" und "Sonstige Gebäude – SG" unterschieden. Sind diese Termini nicht Inhalt einer Überschrift, so handelt es sich dabei um einen Block, der bei allen Energieausweisformularen ident ist.

7.2 Block "GEBÄUDE" (generell)

Bei sämtlichen Energieausweisen und bei allen Varianten ist der Kopf der ersten Seite ident.

BEZEICHNUNG	
Gebäude (-teil)	Baujahr
Nutzungsprofil	Letzte Veränderung
Straße	Katastralgemeinde
PLZ/Ort	KG-Nr.
Grundstücksnr.	Seehöhe


Folgende Eintragungen sind durchzuführen:

- Bezeichnung: frei eintragbar (z.B. Wohnhausanlage Name, Krankenhaus Name,...)
- Gebäude(-teil): frei eintragbar
- Nutzungsprofil: wird aufgrund des gewählten Nutzungsprofils befüllt
- Straße: frei eintragbar
- PLZ, Ort: frei eintragbar
- Grundstücksnummer (allenfalls Einlagezahl): frei eintragbar
- Baujahr: frei eintragbar (Baubewilligung, Fertigstellung)
- Letzte Veränderung: frei eintragbar (Anzeige, Fertigstellung)
- Katastralgemeinde: aus NAT.xls
- KG-Nummer: aus NAT.xls
- Seehöhe: wird aus der Berechnung des Standortklimas übernommen

LEITFADEN ENERGIETECHNISCHES VERHALTEN VON GEBÄUDEN				
Ausgabe: Dezember 2011	Beschluss: 30.12.2011	Ersetzt Ausgabe: Oktober 2011	OIB-Zahl OIB-330.6-002/12	Seite 23 von 28 Seiten

7.3 Block "ENERGIEEFFIZIENZSKALA" (LABELING)

Es werden der Heizwärmebedarf, der Primärenergiebedarf und die Kohlendioxidemissionen jeweils für das Standortklima sowie der Gesamtenergieeffizienz-Faktor dargestellt.

Die Klassengrenzen sind der OIB-Richtlinie 6 (Punkt 14) zu entnehmen.

Der Balken mit Beschriftung der Energieeffizienzklasse des Heizwärmebedarfs ist mit einem dynamischen Maßstab an der Energieeffizienzskala zu justieren. Für HWB < 5 kWh/m²a ist für den Maßstab der HWB = 5 kWh/m²a zu setzen. Für HWB > 275 kWh/m²a ist für den Maßstab der HWB = 275 kWh/m²a zu setzen.

Der Balken mit Beschriftung der Energieeffizienzklasse des Primärenergiebedarfs ist mit einem dynamischen Maßstab an der Energieeffizienzskala zu justieren. Für PEB < 30 kWh/m²a ist für den Maßstab der PEB = 30 kWh/m²a zu setzen. Für PEB > 430 kWh/m²a ist für den Maßstab der PEB = 430 kWh/m²a zu setzen.

Der Balken mit Beschriftung der Energieeffizienzklasse der Kohlendioxidemissionen ist mit einem dynamischen Maßstab an der Energieeffizienzskala zu justieren. Für $CO_2 < 4 \text{ kg/m}^2$ a ist für den Maßstab der $CO_2 = 4 \text{ kg/m}^2$ a zu setzen. Für $CO_2 > 75 \text{ kg/m}^2$ a ist für den Maßstab der $CO_2 = 75 \text{ kg/m}^2$ a zu setzen.

Der Balken mit Beschriftung der Energieeffizienzklasse des Gesamtenergieeffizienz-Faktors ist mit einem dynamischen Maßstab an der Energieeffizienzskala zu justieren. Für $f_{\text{GEE}} < 0,275$ ist für den Maßstab der $f_{\text{GEE}} = 0,275$ zu setzen. Für $f_{\text{GEE}} > 4,375$ ist für den Maßstab der $f_{\text{GEE}} = 4,375$ zu setzen.

LEI	TFADEN ENERGIET	ECHNISCHES VERHA	ALTEN VON GEBÄUDE	N
Ausgabe: Dezember 2011	Beschluss: 30.12.2011	Ersetzt Ausgabe: Oktober 2011	OIB-Zahl OIB-330.6-002/12	Seite 24 von 28 Seiten

7.4 Block "GEBÄUDEKENNDATEN" (generell)

Dieser Block hat folgende Inhalte:


GEBÄUDEKENNDATEN		
Brutto-Grundfläche	Klimaregion	mittlerer U-Wert
Bezugs-Grundfläche	Heiztage	Bauweise
Brutto-Volumen	Heizgradtage	Art der Lüftung
Gebäude-Hüllfläche	Norm-Außentemperatur	Sommertauglichkeit
Kompaktheit (A/V)	Soll-Innentemperatur	LEK _T -Wert
charakteristische Länge		

- Brutto-Grundfläche: wird aus der Geometrieberechnung übernommen
- Bezugs-Grundfläche: wird aus der Geometrieberechnung übernommen
- Brutto-Volumen: wird aus der Geometrieberechnung übernommen
- Gebäude-Hüllfläche: wird aus der Geometrieberechnung übernommen
- Kompaktheit (A/V): wird aus der Geometrieberechnung übernommen
- Charakteristische Länge (Ic): wird aus der Geometrieberechnung übernommen
- Klimaregion: wird aus der Standortfestlegung übernommen
- Heiztage: wird aus der Heizperiodenberechnung übernommen
- Heizgradtage 12/20: wird aus der Standortklimaberechnung übernommen
- Norm-Außentemperatur: wird aus NAT.xls übernommen
- Soll-Innentemperatur: wird aus dem Nutzungsprofil übernommen
- Mittlerer U-Wert: ist der Transmissionsleitwert durch die Gebäude-Hüllfläche
- Bauweise: gemäß ÖNORM B 8110-6
 - o leicht
 - o mittelschwer
 - o schwer
 - o sehr schwer
- Art der Lüftung:
 - o Fensterlüftung
 - o RLT mit WRG
 - o RLT ohne WRG
- Sommertauglichkeit: entsprechend der Nachweisführung
 - o keine Angabe
 - o eingehalten
 - o nachgewiesen
 - o nachgewiesen: Vermeidung sommerlicher Überwärmung gemäß ÖNORM B 8110-3 mit Nachweis eingehalten
- LEK_T-Wert: optionale Angabe, soferne diese landesrechtlich vorgesehen ist; dieser Wert kann gemäß ÖNORM B 8110-6 befüllt werden; ansonsten ist die Bezeichnung auszublenden.

LEITFADEN ENERGIETECHNISCHES VERHALTEN VON GEBÄUDEN				
Ausgabe: Dezember 2011	Beschluss: 30.12.2011	Ersetzt Ausgabe: Oktober 2011	OIB-Zahl OIB-330.6-002/12	Seite 25 von 28 Seiten

7.5 Block "WÄRME- UND ENERGIEBEDARF" (WG)

Dieser Block hat folgende Inhalte:

Allfällige Angaben über die Erfüllung von Anforderungen (für den Heizwärmebedarf und den Endenergiebedarf) sind unter Benennung folgender Anforderungsniveaus in den letzten beiden Spalten unter der Überschrift "Anforderung" zu geben:


- OIB Neubau-Anforderung 2012
- OIB Sanierungs-Anforderung 2010

Liegt keine Anforderung vor, so sind alle Felder dunkelgrau einzufärben.

LEITFADEN ENERGIETECHNISCHES VERHALTEN VON GEBÄUDEN				
Ausgabe: Dezember 2011	Beschluss: 30.12.2011	Ersetzt Ausgabe: Oktober 2011	OIB-Zahl OIB-330.6-002/12	Seite 26 von 28 Seiten

7.6 Block "WÄRME- UND ENERGIEBEDARF" (NWG)

Dieser Block hat folgende Inhalte:

Allfällige Angaben über die Erfüllung von Anforderungen (für den Heizwärmebedarf, den Kühlbedarf und den Endenergiebedarf) sind unter Benennung folgender Anforderungsniveaus in den letzten beiden Spalten unter der Überschrift "Anforderung" zu geben:

- OIB Neubau-Anforderung 2012
- OIB Sanierungs-Anforderung 2010

Liegt keine Anforderung vor, so sind alle Felder dunkelgrau einzufärben.

LEI	TFADEN ENERGIET	ECHNISCHES VERHA	ALTEN VON GEBÄUDE	N
Ausgabe: Dezember 2011	Beschluss: 30.12.2011	Ersetzt Ausgabe: Oktober 2011	OIB-Zahl OIB-330.6-002/12	Seite 27 von 28 Seiten

7.7 U-Werte-Block (SG)

Nända sasan Auf anluft	Zustand	U [W/m²K]	U _{Anf} [W/m²K]	Anforderung
Vände gegen Außenluft				
Nände erdberührt				
Decken und Dachschrägen jeweils gegen Auf	Benluft und gegen Dachr	äume (durchlüftet o	der ungedämmt)	
Decken innerhalb von Wohn- und Betriebsei	nheiten			
Nände gegen andere Bauwerke an Grundstü	cks- bzw. Bauplatzgrenze	en		
Decken gegen unbeheizte Gebäudeteile				
Füren unverglast gegen Außenluft				
Fenster, Fenstertüren, verglaste Türen jewei	ls in Nicht-Wohngebäude	n (NWG) gegen Auß	enluft	
Dachflächenfenster gegen Außenluft				

Zustand: Es ist einzutragen, ob eine Änderung stattgefunden hat, die allenfalls einer Anforderung gegenüber steht, die dann wiederum erfüllt oder nicht erfüllt ist.

LEITFADEN ENERGIETECHNISCHES VERHALTEN VON GEBÄUDEN				
Ausgabe: Dezember 2011	Beschluss: 30.12.2011	Ersetzt Ausgabe: Oktober 2011	OIB-Zahl OIB-330.6-002/12	Seite 28 von 28 Seiten

7.8 Unterschriftenblock (generell)

Der Unterschriftenblock schließt jeden Energieausweis ab.

ERSTELLT		
GWR-Zahl	ErstellerIn	
Ausstellungsdatum	Unterschrift	
Gültigkeitsdatum		

7.9 Verwendete Farbcodes

Auf den Energieausweisen wurden folgende Farbcodes verwendet:

	Farbe	Rot	Grün	Blau
OIB-Balken		140	198	63
A++		20	174	71
A +		69	189	56
Α		138	212	34
В		204	222	13
С		248	221	0
D		248	178	0
Е		248	117	1
F		242	54	7
G		234	11	11